

DEPARTMENT OF MATHEMATICS

Semester : V

Integrated M.Sc. Mathematics (060090501) CC11 Complex Analysis

Academic Year-2019-20

Teaching Schedule

Course Objectives: In this course students will learn the algebra and geometry of complex numbers, mappings in the complex plane, the theory of multi-valued functions, and the calculus of functions of single complex variable. To analyses the complex number system and classify mathematical operations, analyses and problems involving complex numbers.

Course Outcomes: Upon completion of the course, students shall be able to

- **CO1:** Perform basic mathematical operations (arithmetic, powers, roots) with complex numbers in Cartesian and polar forms
- **CO2:** Determine continuity/differentiability/analyticity of a function and find the derivative of a function.
- **CO3:** Work with functions (polynomials, reciprocals, exponential, trigonometric, hyperbolic, etc) of single complex variable and describe mappings in the complex plane.
- **CO4:** Evaluate a contour integral using parametrization, fundamental theorem of calculus and cauchy's integral formula.
- **CO5:** Find the taylor series of a function and determine its circle or annulus of convergence.
- **CO6:** Compute the residue of a function and use the residue theory to evaluate a contour integral or an integral over the real line.


```
Semester : V
```

Integrated M.Sc. Mathematics (060090501) CC11 Complex Analysis

Academic Year-2019-20

Unit	Sub Unit	No. of Lect. (s)	Topics	Reference Chapter/ Additional Reading	Teach ing Metho dology tobe used	Active Learning Activities	Evaluation Parameters
Unit 1	l: Funct	ions	Of Complex Variable				[17]
	1.1	2	Limit, continuity, differentiability	Ch#1		For Slow Learner:	Unit test
	1.2	3	Analytic function	Foundation		Students must	
1	1.3	4	Cauchy- Riemann equation	s of	Chalk ø	write answer of	
	1.4	4	Construction of analytic function	Complex	a Talk	by teacher after	
	1.5	4	Harmonic function	Analysis		completion of Unit.	
				S.Ponnusamy		For Active Learner:	
						Students read at	
						least one research	
						paper based on DIP	
						content with Unit	
Unit 2	2: Comp	lex Ir	ntegration	<u>l</u>			[15]
	2.1	5	Cauchy's theorem. Cauchy's	Ch#2		For Slow Learner:	Unit test
	2.2	5	integral	Foundation	Chalk	Study methods	
			formula, Cauchy's inequalities	s of		from book/papers	
2			Morera's theorem, Liouville's	Complex		and discuss within	
			theorem.	Analysis	&	group.	
			Taylor's and Laurent's series	S.Ponnusamy	Talk	Learner: Apply	
			Maximum modulus principle			different methods	
	2.3	5	Singularities: Isolated, essential			in selected	
			and removable. Zeroes and poles			application and	
						show the results	
						with analysis.	[4 5]
Unit 3	s: Resid	ues		01.00			
	3.1	2	Residue at pole, residue at	Ch#3		For Slow Learner:	Assignment
	2.2			Foundation	Chalk	from book/napers	
	3.2	3	Cauchy's residue theorem	s of			

Uka Tarsadia University Maliba Campus, Gopal Vidyanagar, Bardoli-Mahuva Road-394350

DEPARTMENT OF MATHEMATICS

Semester : V

Integrated M.Sc. Mathematics (060090501) CC11 Complex Analysis

Academic Year-2019-20

					_		
2	3.3	4	Number of poles and zeroes of an	Complex	& Talk	and discuss within	
3			analytic function	Analysis		group.	
				S. Ponnusamy		*For Active	
	3.4	4	Rouche's theorem	1		Learner: Apply	
	2 5	4	Contour integration, avaluation	-		different methods	
	3.5	4	Contour integration: evaluation			in selected	
			of integrals			application and	
						show the results	
						with analysis.	
Unit 4	Unit 4: Conformal Mapping						[16]
	4.1	2	Mobius transformation	Ch#4		For Slow Learner:	
	4.2	2	Translation	Foundation		Provide calculation	Assignment
	4.3	3	Rotation	s of	Chalk	based question by	
4	<u> </u>	3	Inversion	Complex	&	teacher and	
	1.1	5		Analysis	Talk	Students solve	
				S Ponnusamy		them.	
	4 5	2		5. I Ollitusalliy		*For Active	
	4.5	3	Cross-ratio	-		Learner: Apply	
	4.6	3	Critical value of a transformation			different methods	
						in selected	
						application and	
						show the results	
					1		1

Text books:

1. S. Ponnusamy, "Foundations of Complex Analysis", 2nd Edition, Narosa Book Distributors Pvt Ltd- New Delhi, 2017

Reference books:

- 1. Ruel V. Churchill, James Ward Brown, "Complex Variables and Applications", 8th Edition, Tata McGraw
 - Hill Education, 2009.
- 2. Narayan Shanti, "Theory of Functions of a Complex Variable", 2nd Edition, S. Chand & Company Pvt. Ltd

Course Objectives and Course Outcomes Mapping:

• learn the algebra and geometry of complex numbers, mappings in the complex plane, the theory of multi-valued functions, the calculus of functions of single complex variable - C01, C02, C03

DEPARTMENT OF MATHEMATICS

Semester : V

Integrated M.Sc. Mathematics (060090501) CC11 Complex Analysis

Academic Year-2019-20

• To analyse the complex number system and classify mathematical operations, analyses and problems involving complex numbers - CO4, CO5, CO6

Course Units and Course Outcomes Mapping:

Unit No.	Unit	Course Outcomes						
		C01	CO2	CO3	CO4	CO5	C06	
1	Functions of complex variable	\checkmark	\checkmark					
2	Complex Integration				\checkmark	\checkmark		
3	Residues						\checkmark	
4	Conformal mapping			\checkmark				

Programme Outcomes (PO)

PO1: Knowledge

Provides knowledge about the fundamentals of pure, applied and computing mathematics and its applications to students that creates the opportunities in industries and research centers.

PO2: Core Competence

Creates competency in science and mathematics to formulate, analyses and solve problem and/or also to pursue advanced study or research.

PO3: Breadth

Trains students having good knowledge in unearth core of academia and industry by the roots of mathematics.

PO4: Evaluation

Imparts in students to raise trial and error-based curiosity and problem-solving functionality with research based advanced tutorial for higher level decision makings tools.

Programme Outcomes and Course Outcomes Mapping:

Programme Outcomes			Course C	Outcomes		
	CO1	CO2	CO3	CO4	CO5	C06
PO1	\checkmark	\checkmark				
PO2		✓			✓	
PO3			✓			\checkmark
PO4		\checkmark		\checkmark		

